Subspace Detection of DNN Posterior Probabilities via Sparse Representation for Query by Example Spoken Term Detection
نویسندگان
چکیده
We cast the query by example spoken term detection (QbESTD) problem as subspace detection where query and background subspaces are modeled as union of low-dimensional subspaces. The speech exemplars used for subspace modeling are class-conditional posterior probabilities estimated using deep neural network (DNN). The query and background training exemplars are exploited to model the underlying lowdimensional subspaces through dictionary learning for sparse representation. Given the dictionaries characterizing the query and background subspaces, QbE-STD is performed based on the ratio of the two corresponding sparse representation reconstruction errors. The proposed subspace detection method can be formulated as the generalized likelihood ratio test for composite hypothesis testing. The experimental evaluation demonstrate that the proposed method is able to detect the query given a single example and performs significantly better than a highly competitive QbE-STD baseline system based on dynamic time warping (DTW) for exemplar matching.
منابع مشابه
Sparse Subspace Modeling for Query by Example Spoken Term Detection
We cast the problem of query by example spoken term detection (QbE-STD) as subspace detection where query and background are modeled as a union of low-dimensional subspaces. The speech exemplars used for subspace modeling consist of class-conditional posterior probabilities obtained from deep neural network (DNN). The query and background training exemplars are exploited to model the underlying...
متن کاملRedundant Hash Addressing for Large-Scale Query by Example Spoken Query Detection
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW). Exploiting posterior probabilities as speech representation propounds diverse advantages in a classif...
متن کاملSubspace Regularized Dynamic Time Warping for Spoken Query Detection
Dynamic time warping (DTW) is an algorithm to find out the similarity between two temporal sequences of varying length. Previous works in this field can be traced back to as early as [1], for automatic speech recognition (ASR). Although this technique became obsolete for ASR with the advent of Hidden Markov Models (HMM) [2] and Deep Neural Network (DNN) based hybrid models [3], [4], DTW was fou...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملLow-Rank Representation of Nearest Neighbor Posterior Probabilities to Enhance DNN Based Acoustic Modeling
We hypothesize that optimal deep neural networks (DNN) class-conditional posterior probabilities live in a union of lowdimensional subspaces. In real test conditions, DNN posteriors encode uncertainties which can be regarded as a superposition of unstructured sparse noise over the optimal posteriors. We aim to investigate different ways to structure the DNN outputs by exploiting low-rank repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016